Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.
نویسندگان
چکیده
We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression.
منابع مشابه
Expression of the TGF-beta receptor gene and sensitivity to growth inhibition following polyamine depletion.
Our previous studies have shown that inhibition of polyamine biosynthesis increases the sensitivity of intestinal epithelial cells to growth inhibition induced by exogenous transforming growth factor-beta (TGF-beta). This study went further to determine whether expression of the TGF-beta receptor genes is involved in this process. Studies were conducted in the IEC-6 cell line, derived from rat ...
متن کاملIn vitro Induction of Fetal Hemoglobin in Erythroid Cells Derived from CD133 Cells by Transforming Growth Factor-b and Stem Cell Factor
Increased fetal hemoglobin (HbF) in b-globin gene disorders ameliorates the clinical symptoms of the underlying disease. 5-azacytidine, butyrate and hydroxyurea, have been shown to activate g-globin gene expression. It has also been found that hematopoietic growth factors can influence expression of g-globin in erythroid cultures and in animal models. This study was designed to evaluate the in ...
متن کاملRecombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells
Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...
متن کاملEvaluation of Transforming Growth Factor Beta 1 and Curcumin on Proliferation and Differentiation of Nasal-Derived Chondrocyte Seeded on the Fibrin Glue Scaffold
Introduction: Natural biomaterials and growth factors are key factors in tissue engineering. The objective of the present study was to evaluate transforming growth factor beta 1 (TGF-β1) and curcumin on proliferation and differentiation of nasal-derived chondrocyte seeded on the fibrin glue scaffold. Methods: Chondrocytes were isolated from nasal samples. Nasal-derived chon...
متن کاملS-adenosylmethionine decarboxylase gene expression in rat hepatoma cells: regulation by insulin and by inhibition of protein synthesis.
We have investigated expression of the S-adenosylmethionine decarboxylase (AdoMetDC) gene in H4-II-E rat hepatoma cells treated with growth factors (epidermal growth factor and transforming growth factor beta 1) and inducers (cAMP and insulin). Treatment with insulin caused a marked increase in both RNA level and enzyme activity. The stability of AdoMetDC mRNA was not altered by insulin treatme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 321 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1997